Solving equations

The balancing method

An equation means that two things are equal.
If the scales balance, then the value of each side must be equal.

The scales now show that two bags of x marbles plus four extra marbles equals $\mathbf{2 0}$ marbles.

We can continue to remove marbles, as long as we do the same thing to each

Try another one:

Two bags of x marbles plus five extra marbles equals one bag of x marbles plus ten extra marbles.

The scales now show that two bags of x marbles equals 16 marbles. We can't remove any more marbles, but we can halve the values on each

$$
\begin{aligned}
2 x+5 & =21 \\
2 x & =16 \\
x & =8
\end{aligned}
$$

Try another one:

Two bags of x marbles plus six extra marbles equals one bag of x marbles plus nine extra marbles.

When solving equations, try to imagine the scales.

To make sure the equation balances ..

Whatever we do to one side of the equation

 we must do to the other.Example 1:
$2 x+6=x+9$
$2 x=x+3$
$x=3$
$2 x+6=x+9$
$x+6=9$
$x=3$

Does it matter if you subtracted the x or the number first?

When solving equations, try to imagine the scales.
To make sure the equation balances
Whatever we do to one side of the equation we must do to the other.

Example 2:
$8 x-5=11$

$$
8 x=16
$$

Example 3:

$$
x=2
$$

Example 4:

$$
\begin{aligned}
5 p-17 & =-2 \\
5 p & =15 \\
p & =3
\end{aligned} \quad \div 5
$$

Example 5:

$$
\begin{aligned}
3 x-5 & =x+11 \\
3 x & =x+16 \\
2 x & =16 \\
x & =8
\end{aligned}
$$

$7 q+6=3 q+10$
$7 q=3 q+16$
$4 q=16$
$\mathrm{q}=4 \quad \div 4$

When solving equations, try to imagine the scales
To make sure the equation balances.
Whatever we do to one side of the equation we must do to the other.

Solve the following equations:

a) $3 x+8=20 \quad x=4$
b) $7 x-9=26 \quad x=5$
c) $5 x-40=-5 \quad x=7$
d) $3 x+7=x+11 \quad x=2$
e) $6 x+5=4 x+10 \quad x=2.5$
f) $5 p-3=2 p+9 \quad p=4$
g) $4 y-7=2 y-9 \quad y=-1$

