Topic 1: Energy

Equations to Learn:

$$efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$$

$$efficiency = \frac{useful power output}{total power input}$$

gravitational potential energy = $mass \times g \times height$

$$E_p = m \times g \times h$$

kinetic energy = $0.5 \times \text{mass} \times \text{speed}^2$

$$E_k = \frac{1}{2} \times m \times v^2$$

energy transferred = work done

$$Power = \frac{Work \ done}{time \ taken} \ = \ \frac{Energy \ Transferred}{time \ taken}$$

$$P = \frac{W}{t} \text{ or } P = \frac{E}{t}$$

Equations given in exam:

elastic potential energy = $0.5 \times \text{mass} \times (\text{extension})^2$

$$E_{e} = \frac{1}{2} \times m \times e^{2}$$

Energy = mass x Specific Heat Capacity x Temp change

$$\Delta Q = m \times c \times \Delta T$$

Topic 2: Electricity

Equations to learn:

 $power = current \times voltage$

$$P = I \times V$$

power = $current^2 \times resistance$

$$P = I^2 \times R$$

 $voltage = current \times resistance$

$$V = I \times R$$

 $charge = current \times time$

$$Q = I \times t$$

energy = $charge \times voltage$

$$E = Q \times V$$

Resistance total = sum of individual resistors in series

$$R_T = R_1 + R_2$$

Energy = power \times time

$$E = P \times t$$

Topic 5: Forces

Equations to Learn

distance travelled = speed \times time

$$s = v \times t$$

$$acceleration = \frac{change in velocity}{time taken}$$

$$a = \frac{\Delta v}{t}$$

$$pressure = \frac{force}{area}$$

$$p = \frac{F}{A}$$

resultant force = $mass \times acceleration$

$$F = m \times a$$

weight = mass \times gravitational field strength

$$W = m \times g$$

$momentum = mass \times velocity$

$$p = m \times v$$

moment of a Force = force \times distance

$$M = F \times d$$

Work done = force \times distance

$$W = F \times s$$

force applied to a spring = Spring constant x extension

$$F = k \times e$$

Stopping distance = braking distance + thinking distance

pressure difference = height \times density \times g

$$p = h \times \rho \times g$$

elastic potential energy = $0.5 \times \text{mass} \times (\text{extension})^2$

$$E_e = 0.5 \times m \times e^2$$

Equations given in exam:

$$F = \frac{change\ in\ momentum}{change\ in\ time}$$

$$F = \frac{mv - mu}{t}$$
 or $F = \frac{m\Delta v}{t}$

(Final speed)² = (initial speed)²+ (2 x acceleration x distance)

$$v^2 = u^2 + (2 \times a \times s)$$

Topic 6: Waves

Equations to Learn

wave speed = frequency \times wavelength

$$v = f \times \lambda$$

Equations given in exam:

frequency =
$$\frac{1}{\text{time period}}$$
 or

$$f = \frac{1}{T}$$

$$magnification = \frac{image \ height}{object \ height}$$

Topic 3: Particle model of matter

Equations to Learn

density =
$$\frac{\text{mass}}{\text{volume}}$$

$$\rho = \frac{m}{V}$$

Equations given in exam

Energy = mass x Specific Heat Capacity x Temp change

$$\Delta Q = m \times c \times \Delta T$$

Thermal energy for Change of State = mass \times specific latent heat $E = m \times L$

 $pressure \times volume = constant$

pV = constant

Topic 7: Magnetism & Electromagnetism

Equations given in exam

Force = magnetic flux density \times current \times length

$$\mathbf{F} = \mathbf{B} \times \mathbf{I} \times \mathbf{I}$$

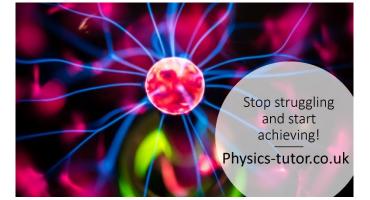
 $\frac{input (primary)voltage}{output (secondary)voltage} = \frac{primary turns}{secondary turns}$

$$\frac{\mathbf{V_P}}{\mathbf{V_S}} = \frac{\mathbf{N_P}}{\mathbf{N_S}}$$

input power = output power

$$V_P \times I_P = V_S \times I_S$$

for 100% efficiency


No equations are required for the following topics:

Topic 4: atomic structure

Topic 8 Space Physics

AQA GCSE PHYSICS

EQUATIONS IN BOLD ARE PAPER 2 CONTENT ONLY

