Section 1: Forces and motion

Equations to Learn

average speed =
$$\frac{\text{distance moved}}{\text{time taken}}$$

$$acceleration = \frac{change in velocit}{time taken}$$

$$a = \frac{(v - u)}{t}$$

force = $mass \times acceleration$

$$F = m \times a$$

 $weight = mass \ \times gravitational \ field \ strength$

$$W = m \times g$$

 $momentum = mass \times velocity$

$$\mathbf{p} = \mathbf{m} \times \mathbf{v}$$

$\label{eq:moment} \textbf{moment} = \textbf{force} \times \textbf{perpendicular distance} \\ \textbf{from the pivot} \\$

Stopping distance = braking distance + thinking distance

Force = Spring constant x extension

Equations given in exam:

$$F = \frac{change\ in\ momentum}{change\ in\ time}$$

$$F=\frac{mv-mv}{t}$$

(Final speed) 2 = (initial speed) 2 + (2 x acceleration x distance)

$$v^2 = u^2 + (2 \times a \times s)$$

Section 2: Electricity

Equations to learn:

 $power = current \times voltage$

$$P = I \times V$$

 $voltage = current \times resistance$

$$V = I \times R$$

 $charge = current \times time$

$$Q = I \times t$$

energy transferred = charge × current × resistance

$$E = Q \times I \times R$$

energy = charge \times voltage

$$E = O \times V$$

Equations given in exam:

energy transferred = current \times voltage \times time

$$E = I \times V \times t$$

Section 3: Waves

Equations to Learn

wave speed = frequency \times wavelength

$$v = f \times \lambda$$

refractive index, $n = \frac{\sin i}{\sin r}$

$$\sin C = \frac{1}{n}$$

$$n = \frac{c}{v}$$

Equations given in exam:

frequency =
$$\frac{1}{\text{time period}}$$
 or $f = \frac{1}{T}$

Section 4: Energy Resources & Energy Transfer

Equations to Learn:

$$efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$$

work done = force \times distance moved

$$W = F \times d$$

gravitational potential energy = $mass \times g \times height$

$$GPE = m \times g \times h$$

kinetic energy =
$$\frac{1}{2} \times \text{mass} \times \text{speed}^2$$

$$KE = \frac{1}{2} \times m \times v^2$$

energy transferred = work done

Equations given in exam:

Power =
$$\frac{\text{Work done}}{\text{time taken}} = \frac{\text{Energy Transferred}}{\text{time taken}}$$

$$P = \frac{W}{t}$$

Section 5: Solids, liquids and gases

Equations to Learn

density =
$$\frac{\text{mass}}{\text{volume}}$$

$$\rho = \frac{m}{V}$$

$$pressure = \frac{force}{area}$$

$$p = \frac{F}{A}$$

pressure difference = height \times density \times g

$$p = h \times \rho \times g$$

Equations given in exam

Energy = mass x Specific Heat Capacity x Temp change

$$\Delta O = m \times c \times \Delta T$$

pressure \times volume = constant

$$p_1 \times V_1 = p_2 \times V_2$$

$$\frac{pressure}{temperature} = constant$$

$$\frac{\mathbf{p}_1}{\mathbf{T}_1} = \frac{\mathbf{p}_2}{\mathbf{T}_2}$$

Section 6: Magnetism & Electromagnetism

Equations to Learn

$$\frac{input (primary)voltage}{output (secondary)voltage} = \frac{primary turns}{secondary turns}$$

$$\frac{\mathbf{V_P}}{\mathbf{V_S}} = \frac{\mathbf{N_P}}{\mathbf{N_S}}$$

input power = output power

$$V_P \times I_P = V_S \times I_S$$
 for 100% efficiency

Section 7: Radioactivity and particles

No equations in this section

Section 8: Astrophysics

Equations given in exam

$$\frac{\text{change in wavelength}}{\text{reference wavelength}} = \frac{\text{velocity of a galaxy}}{\text{speed of light}}$$

$$\frac{\lambda - \lambda_o}{\lambda_o} = \frac{\Delta \lambda}{\lambda_o} = \frac{v}{c}$$

orbital speed =
$$\frac{2 \times \pi \times \text{orbital radius}}{\text{time period}}$$

$$v = \frac{2 \times \pi \times r}{T}$$

IGCSE EDEXCEL PHYSICS EQUATIONS

EQUATIONS IN BOLD ARE PAPER 2 CONTENT ONLY

