Year 5

so vixaty

- meascurement
ogeometry
- statistics

Contents

4

Introduction004Unit 1 - Measurement: length problems
Unit 1 Introduction 005
Unit 1 Questions 007
Unit 1 Answers 013
Unit 2 - Measurement: length, perimeter and area
Unit 2 Introduction 020
Unit 2 Questions 022
Unit 2 Answers 026
Unit 3 - Measurement: mass problems
Unit 3 Introduction 030
Unit 3 Questions 032
Unit 3 Answers 038
Unit 4 - Measurement: mass and volume
Unit 4 Introduction 045
Unit 4 Questions 046
Unit 4 Answers 051
Unit 5 - Measurement: metric and imperial units
Unit 5 Introduction 056
Unit 5 Questions 057
Unit 5 Answers 062
Unit 6 - Measurement: units of time
Unit 6 Introduction 068
Unit 6 Questions 070
Unit 6 Answers 073
Unit 7 - Geometry: properties of shapes
Unit 7 Introduction 080
Unit 7 Questions 082
Unit 7 Answers 085
Unit 8 - Geometry: reflections and translations
Unit 8 Introduction 092
Unit 8 Questions 093
Unit 8 Answers 096
Unit 9 - Geometry: angles
Unit 9 Introduction 100
Unit 9 Questions 101
Unit 9 Answers 104
Unit 10 - Statistics: interpreting tables
Unit 9 Introduction 111
Unit 9 Questions 112
Unit 9 Answers 115
Unit 11 - Statistics: interpreting line graphs
Unit 9 Introduction 118
Unit 9 Questions 120
Unit 9 Answers 126

Introduction

This pack features eleven units covering the problem-solving aspects of year 5 maths. Each unit includes comprehensive activities, differentiated to three levels, based on the measurement, geometry and statistics problem-solving objectives in the year 5 maths curriculum. Also included are example sections for whole class scaffolded work, investigations, word problems, teaching notes and step-by-step answers. Within each unit there are three levels of exercises, A, B, C, which follow support, core and extension according to the following:

Set A is for the support [S] group

Set B is for the core [C] group
Set C is for the extension [E] group
The questions in the example sections use the bracketed symbots, $[\mathrm{S}],[\mathrm{C}]$ and $[\mathrm{E}]$, to indicate the level of the work.

We hope you enjoy using this pack. If you have any questions, please get in touch: email support@teachitprimary.co.uk or call us on 01225788851 . Alternatively, you might like to give some feedback for other Teachit Primary members - you can do this by adding a comment on the Y5 Problem solving - number page on Teachit Primary (please log in to access this).

Unit 3 - Measurement

Mass problems

In this unit, you will:

- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.

Remember: k for 'kilo'; t for 'tonne' and g for 'gram'

$1 \mathrm{~g}=1000 \mathrm{mg}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{t}=1000 \mathrm{~kg}$

Whole class examples:

1.

Metric:

a small sheet of paper a 1 l bottle of cola \quad a car
a. Circle the object that is the heaviest. Write them in order of size starting with the lightest. [S]

b. Choose 'grams', 'kilograms' or 'tonnes' to fill in the blanks. [S]
i. The weight of a dog is 7
ii. The weight of a rhinoceros is 2
iii. The weight of an apple is 180
iv. The weight of a spider is 2

2. Compare the measurements using <, > or =. [C]
a. $\quad 5 \mathrm{~kg}$
c. $\quad 1.75$ t \square b. $\quad 2500 \mathrm{~g}$
d. $\quad 14 \mathrm{~kg}$
3 kg
4300 g
3. Convert the following metric units: [C]
a. 2 kg to g
C. 46 g to kg
e. 3 g to mg

b. 2.5 t to kg
d. $\quad 170 \mathrm{~kg}$ to t
f. 675 mg to g

4. A small bar of chocolate weighs 40 grams. Estimate the weight of the large bar. [C]

5. Philip is overweight. He is 103 kg . His aim is to lose 400 g per week. If he manages to do this, how many weeks will it be until he gets below 100 kg ? [E]

Unit 3 - Set A:

1. Circle the object that is the heaviest. Write these in order of size starting with the lightest.

bar of chocolate

carton of juice

pencil

bunch of bananas
2. Choose 'grams', 'kilograms' or 'tonnes' to fill in the blanks.
a. The weight of a car is about 1000
b. The weight of a $£ 1$ coin is about 9
c. The weight of a can of beans is 415
d. The weight of an elephant is 4

3. Compare the measurements using $<,>$ or $=$.
a. $\quad 5 \mathrm{~kg}$
c. $\quad 2 \mathrm{t}$

5000 g
b. $\quad 350 \mathrm{~g}$
d. $\quad 3 \mathrm{~g}$ \square 3 kg
1100 mg
4. Convert the following metric units:
a. 3 kg to g
C. 4000 g to kg
e. $\quad 3.7 \mathrm{~kg}$ to g
g. 2 g to mg
\square b. 4 t to kg
d. $\quad 1500 \mathrm{~kg}$ to t
f. 870 g to kg
h. $\quad 545 \mathrm{mg}$ to g \square
5. Daniel buys $1 / 2$ kilogram of carrots. Katy buys 450 grams of carrots.
a. Who bought the greater amount of carrots?

b. Katy then decided that she needed 1 kg of carrots. How much more does she need to buy? Write your answer in grams.
6.

A bowl of Jason's favourite breakfast cereal contains about 60 g of muesli per serving. His mother bought a new box for him. If the contents of the box weigh 1.25 kg , how many servings will he be able to eat?
7. A shop fills a box full of toys to send to a customer. Each toy weighs 120 g . When they filled the box, it weighed 4 kg (including the box) which was overweight. What is the minimum number of toys that would need to be removed for the weight of the box to drop to below 3 kg ?

Unit 3 - Measurement: Answers

Mass problems

For progression, children can be guided as follows:

Support	Core
Set A Q3 \rightarrow Set B Q1	Set B Q2 \rightarrow Set C Q1
Set A Q4 \rightarrow Set B Q2	Set B Q3-6 \rightarrow Set C Q3-7
Set A Q5 \rightarrow Set B Q3 \& 4	Set B Q7 \rightarrow Set C Q2

For estimating size (Set A Q1 and Q2), encourage some discussion about the relative sizes - 'Could a bumble bee be that small?', 'I never knew that an elephant weighed that much'.

When converting units (Set A Q3-5; all of Sets B and C), the children should be encouraged to use their own multiplying/division techniques. However, for those who struggle with these operations, it is advisable to reinforce the choice of operation first and attempt the 'build up'.

Questions Set B Q6 and Set C Q4-7 allow the children to decide which unit to work with. If they are unsure, then suggest changing all units to the smaller one (in this case kg to g), as it removes the added issue of working with decimals.

Whole class examples:

a.
i. cat $(4 \mathrm{~kg})$
ii. helicopter (5 t)
spider (5 g) horse (500 kg)
£2 coin (12 g) bumble bee (5 g) orange (140 g)
i. The weight of a dog is 7
ii. The weight of a rhinoceros is 2
iii. The weight of an apple is 180
iv. The weight of a spider is 2

kilograms
tonnes
grams
grams

2.

a. $\quad 5 \mathrm{~kg}$
c. $\quad 1.75 \mathrm{t}$ \square 900 g
1750 kg
b. $\quad 2500 \mathrm{~g}$
d. $\quad 14 \mathrm{~kg}$ \square 3 kg 4300 g
3.
a. $2 \mathrm{~kg}=2 \times 1000 \mathrm{~g}=2000 \mathrm{~g}$
c. $\quad 46 \mathrm{~g}=\begin{aligned} & 46 \div 1000 \mathrm{~kg}=0.046 \\ & \mathrm{~kg}\end{aligned}$
e. $3 \mathrm{~g}=$
$3 \times 1000 \mathrm{mg}=3000 \mathrm{mg}$
b. $2.5 \mathrm{t}=$
d. $\quad 170 \mathrm{~kg}=$ $170 \div 1000 t=0.17 t$
f. $675 \mathrm{mg}=$
$675 \div 1000 \mathrm{~g}=$
0.675 g
4.

Small bar consists of 10 squares $=40 \mathrm{~g}$. One square $=40 \div 10=4 \mathrm{~g}$ each. Large bar consists of 16 squares. Weight $=16 \times 4 \mathrm{~g}=64 \mathrm{~g}$.
5.

Philip needs to lose $3 \mathrm{~kg}(103-100) .3 \mathrm{~kg}=3 \times 1000 \mathrm{~g}=3000 \mathrm{~g}$. We need to find how many ' 400 g ' we can get from 3000 g .

Unit 3 - Set A: Answers

1. In order of size:
pencil bar of chocolate
carton of juice
2.

a. The weight of a car is about 1000
b. The weight of a $£ 1$ coin is about 9
c. The weight of a can of beans is 415
d. The weight of an elephant is 4

kilograms
grams
grams
tonnes

3.

a.	5 kg	$=$	5000 g	
c.	2 t	$>$		

b. $\quad 350 \mathrm{~g}$
d. $\quad 3 \mathrm{~g}$

a. 3 kg
c. 4000 g
$4000 \div 1000 \mathrm{~kg}=4 \mathrm{~kg}$
d. 1500 kg
$1500 \div 1000 \mathrm{t}=1.5 \mathrm{t}$
f. 870 g
$870 \div 1000 \mathrm{~kg}=$ 0.87 kg
h. 545 mg
$545 \div 1000 \mathrm{mg}=$ 0.545 mg
5.
a. $1 / 2 \mathrm{~kg}=1 / 2 \times 1000 \mathrm{~g}=500 \mathrm{~g}(>450 \mathrm{~g})$. So Daniel bought more.
b. $1 \mathrm{~kg}=1 \times 1000 \mathrm{~g}=1000 \mathrm{~g} .1000 \mathrm{~g}-450 \mathrm{~g}=550 \mathrm{~g}$ more.

